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ABSTRACT

Today, information systems are threatened not only by the opportunistic exploitation of particular technical
weaknesses, but increasingly by targeted attacks that combine multiple vectors to achieve the attacker’s
objectives. Given the complexities involved, identifying the most appropriate measures to counteract the
latter threats is highly challenging. In this paper, we introduce a novel simulation-optimization method
that tackles this problem. It combines rich conceptual modeling of security knowledge with discrete event
simulation and metaheuristic optimization techniques. By simulating attacks, the method infers possible
routes of attack and identifies emergent weaknesses while accounting for adversaries’ heterogeneous
objectives, capabilities, and available modes of entry. The optimization iteratively adapts the system model
by means of a genetic algorithm and optimizes its ability to detect ongoing attacks and prevent their
successful execution. We describe a prototypical implementation and illustrate its application by means of
scenarios for five types of adversaries.

1 INTRODUCTION

Most organizations today have developed a critical dependence on information systems. Securing these
systems in order to protect the reputation, profitability, confidence in, and, ultimately, the existence of their
organizations has therefore become a major concern that decision-makers have to address. Historically,
security investment decisions mainly focused on protecting systems from threats such as worms or viruses,
in line with the conception of IT security as purely a technical problem. Although automated attacks that
exploit singular technical weaknesses still remain relevant, their importance today is eclipsed by targeted
attacks that combine different approaches and coordinate the effects of multiple steps to reach particular
goals. In this context, security can no longer be viewed as purely a technical issue, but has to be conceived
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as an emergent property that involves interdependent aspects such as network security, software security,
physical security, organizational security, and so forth.

In the light of the increasingly complex nature of information security problems and the large array
of available physical, technical, operational, and organizational controls that aim to improve it (e.g., virus
scanners, firewalls, intrusion detection and prevention systems, access control systems, encryption, patch
management, security awareness training), decision-makers struggle to identify the most appropriate means
to counteract the threats their organizations face.

In this context, it is fundamental to gain an understanding of potential adversaries, their motivations,
capabilities, resources, trust status and objectives because these characteristics determine their attack
campaign and, ultimately, the risk they pose to an information system. Hence, these aspects must be
considered in security analyses and decisions because without addressing the question “secure from
whom?”, the term “security” itself is essentially meaningless (Schneier 2000).

In this paper, we introduce an approach that is based on an adversary-centric view and combines
modeling and simulation-optimization techniques. It relies on (i) a model of the system to be optimized,
(ii) an abstract causal model of attack actions and their effects, and (iii) an explicit model of threat agents
and their behavior.

Our work is related to the attack graph concepts introduced in Ammann et al. (2002) and Sawilla and
Ou (2008), but follows a new direction. Whereas existing approaches are based on the idea of enumerating
the entire set of possible paths to build a complete attack graph, we conceive the discovery of attack paths
as a dynamic process. In this respect, we follow some ideas for state-space modeling and simulation
from the literature. Related work includes advanced formalisms for dynamic security simulations, such as
Generalized Stochastic Petri Nets (Dalton et al. 2006) and Boolean Logic Driven Markov Processes (BDMP)
(Piétre-Cambacédès and Bouissou 2010). In contrast to these contributions, our approach simulates human
adversaries as agents that make active decisions in attacking a system, deliberately exploiting dynamic
interactions of vulnerabilities. Furthermore, we introduce metaheuristic methods to optimize information
systems and enable decision-makers to study how its security may be improved (e.g., by adding physical,
technical, operational, and organizational security controls) while trading off multiple objectives (e.g.,
effectiveness against different types of adversaries, cost, risk, awareness of attacks etc.).

The paper is organized as follows: In section 2, we introduce our approach for attack modeling and
simulation. Section 3 is concerned with meta-heuristic techniques for the optimization of security control
sets. Section 4 illustrates the practical usefulness of the approach by means of optimizations for sample
scenarios. We close with concluding remarks and an outlook on future research in Section 5.

2 ATTACK SIMULATION

Figure 1 provides a high-level overview of the proposed attack modeling and simulation framework. We
will explain the constituent components in the following sections.

2.1 Knowledge base

The knowledge base (KB) consists of (i) an attack and control model and (ii) a system model. It captures
the knowledge required to simulate attacks and preserves it in a well-structured and reusable manner. Our
implementation uses the declarative logic programming language Prolog to model and reason on the system
environment.

Attack and control model The attack and control model formally specifies how systems may be
attacked (and secured) by means of attack patterns. Each pattern is applicable in a particular context under
specific preconditions. We define actions as clauses with a set of preconditions in the body:

action_sqlInjection(Attacker, DbServer):-
technicalSkillLevel(Attacker, TechnicalSkillLevel),
TechnicalSkillLevel >= 1,
owned(Attacker, AttackHost),
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connected(AttackHost, WebServer, httpProtocol, httpPort),
connected(WebServer, DbServer, dbProtocol, dbPort),
usesDbSoftware(WebServer, DbServer),
not(owned(Attacker, DbServer)).

This example defines the preconditions required for an SQL injection attack. Prolog responds to the
query action sqlInjection by returning all variable bindings for Attacker and DbServer which satisfy the
subgoals, based on the current facts in the KB. To each attack action, we assign (i) costs, (ii) execution
time, (iii) base probability for successful execution, and (iv) the maximum number of possible attempts,
which are attributes required at simulation execution time.

Postconditions define possible outcomes of an attack action, i.e., they specify state transitions that occur
during the simulation. Basic outcome types are successful attacks and failed attacks. Successful execution
of an attack action, could, for example, allow the attacker to gain root access to the target computer, while
a failed attempt could take the target computer offline. Formally, we define both types as execution rules
that assert a change in the KB:

exec_success_action_sqlInjection(Attacker, DbServer):-
assert(owned(Attacker, DbServer)).

Invoking this rule with valid bindings from the previous query asserts the fact that the attacker has access
to the DB server, which may in turn affect the results of subsequent queries. The attack and control model
also contains preventive and detective security controls that may be applied to certain system elements to
increase the difficulty of attacks or enable the system to detect ongoing attacks, respectively.

control_properties(control_ids, detective, false, null, max, delayed, 1000, ids, hostGroup).

This example defines an intrusion detection control ids and the associated properties, which determine (i) if
the control type is detective or preventive, (ii) whether the control is visible to an attacker, (iii) the outcome
of the control (stop or null) (iv) the aggregation type that determines the effect of multiple controls on an
asset (min, max, cumulate), (v) the control response type (immediate or delayed), (vi) the amount of the
detection delay, (vii) the type of assets that implement this control, and (viii) the type of assets that this
control can be applied to. A particular control instance ids1 with associated effectiveness in the context of
an action as well as specific costs can be defined as follows:

control_effectiveness(ids1, action_sqlInjection, 0.80).
ids(ids1, 7500).

System Model To reason about the security of a particular information system, it is necessary to
model its constituent components and establish relations between them. To this end, we model specific
knowledge about the system to be protected, but separate it from the abstract attack knowledge. While a
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domain specific attack model can be reused by all organizations facing similar threats, the system model
is organization specific, and hence, kept in a separate file. In a corporate information system context, this
model may contain a set of tangible and intangible assets, including hardware components, networks, data,
employees, policies etc. To illustrate how an asset is modeled and controls are associated with it, consider
the previously given example of an intrusion detection control. First, an instance of host is added to the
system model. Second, the installed relation is used to link a candidate intrusion detection software asset
to the host. Furthermore, we can state that the dbServers host 1 stores the project database projectDb1,
and that the server is part of the host group dbServerHosts. workstationHosts can access the dbServerHosts
over HTTP. In the same way, additional infrastructure knowledge is modeled.

host(dbServers_host_1).
installed(dbServers_host_1, ids1).
stores(dbServers_host_1, projectDb1).
inHostGroup(dbServers_host_1, dbServerHosts).
hacl(workstationHosts, dbServerHosts, httpProtocol, httpPort).

2.2 Attack Scenario

The attack simulation leverages and combines the knowledge embodied in the attack, control and system
models by executing dynamic attacks for given threat scenarios. Each threat scenario consists of an adversary
model and a particular objective, which is formally specified as a target condition describing a desired
system state (e.g., attacker has access to db2). We formally specify an adversary type with associated
characteristics. This characteristics include initial access (we may, for example, specify that the employee
adversary type has access privileges on workstationHosts and is member of the workstationUserGroup),
behavioral attributes (risk aversion, propensity to alternate between different attack strategies etc.), and
resources (time). Adversaries are also associated with a technical skill level that determines whether certain
advanced actions are available. An organization can define relevant adversary types according to their
threat profile.

2.3 Simulation Execution

Adversaries’ choices regarding their course of action, the outcome of individual attack actions, and the
detection of attacks are probabilistic aspects in the simulation. Therefore, it is necessary to perform multiple
replications with varying sets of random seeds for each attack scenario to capture the inherent variability
and uncertainty. For each replication, the simulation executes a schedule of discrete events and records
various outcome variables which can later be analyzed and aggregated. This flexible framework can capture
complex causal relations and timing interactions.

The types of events used in the simulation are illustrated in Fig. 2. Action selection events schedule
Action Start Events using the adversary’s behavioral model; upon execution, these events determine the
effective duration of the action (which is influenced by factors such as difficulty, adversary skills, preventive
controls etc.) and schedule an Action End Event accordingly. Detection events may be triggered when assets
associated with a detective control are being attacked; an Attacker Stopped Event may be scheduled by
terminating detective controls. Finally, a Target Condition Reached Event is scheduled in case the attacker
has reached the target condition. The mechanisms invoked through these events, i.e., action selection,
action execution, and detective control response, are explained in the following paragraphs.

Action selection We associate adversaries with a behavioral model that iteratively selects attack
actions based on (i) individual adversary characteristics, (ii) the attacker’s general knowledge about possible
routes of attack, and (iii) the outcomes of prior attack actions. This behavioral model is based on the
idea that adversaries have general security knowledge, but not necessarily complete specific knowledge
about the system being attacked. The general knowledge about possible routes of attack is embodied in
an abstract attack graph for the pursued target condition. This graph may be interpreted as an adversary’s
mental map of how actions can be combined to reach a particular outcome. The simulation applies this
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abstract knowledge by querying the knowledge base for valid asset assignments for all preconditions of an
abstract action in the context of the modeled system. This yields a set of concrete action instances A that
can be executed against particular assets. We denote abstract actions by a and concrete action instances
(i.e., abstract actions with assigned variables) by a. In our application example, we use the behavioral
model specified in Algorithm 1 for all internal and external adversaries and assign varying parameters for
wdistance, wsuccess and wdetection. For the other behavioral parameters, we set uniform values for all adversary
types (pcontinueNew = 0.9, pretry = 0.5, palternativesNoNew = 0.7, and palternativesFailed = 0.3).

According to this model, adversaries alternate between following a chosen attack path (i.e., a sequence
of abstract attack actions) and trying new tactics (i.e., choosing new entry points and attack paths). We
assume that adversaries minimize expected effort, i.e., they tend to launch attacks “close” to the target
if possible. This idea is implemented in the choose(A) procedure of Algorithm 1, which chooses among
preselected sets of action instances. It calculates the shortest path distances d(a, t) in terms of cumulative
effort required between each abstract attack action a and the target condition t using Dijkstra’s algorithm
(Dijkstra 1959). Using the longest abstract distance found as a reference, it calculates the relative distance
for all candidate actions based on their position in the abstract graph.

The procedure then calculates individual weights wa for each action instance a based on a’s success and
detection probabilities psuccess(a) and pdetection(a) as well as the relative distance drel

a to the target condition.
Procedure weightedChoice(A,W ) then determines the final choice by selecting from the candidate action
instances with probabilities proportional to the calculated weights W .

After the initial action has been selected, subsequent choices are dependent upon the result of the
previously executed action p. If the previous action was successful and new action instances N have become
available as a consequence, the adversary will choose among them with probability pcontinueNew and choose
among all actions otherwise (lines 9-15).

If the previous action was successful, but did not yield any new action instances, then there are two options
(lines 16-21). With probability palternativesNoNew, the adversary will choose among action instances that
have become available as a consequence of the same action as p, i.e., those returned by getAlternatives(a).
Otherwise, the adversary will search for a new entry point by selecting from all available actions. In case
the previous action p was not successful, the adversary will retry with probability pretry. Otherwise, it will
either choose a neighboring action instance (with probability palternativesFailed) or search for a new entry
point among all available actions. At each step during an attack, the adversary will chose available action
instances directly if their outcome fulfills the target condition (lines 1-6).

Action execution As noted above, each action execution is triggered by an Action End Event. Upon
execution of such an event, we determine (i) whether the executed action was successful, (ii) which actions
are no longer available, (iii) which new actions have become available, and (iv) whether the attack target
has been reached. The result then drives the selection of the following action.
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Algorithm 1 Attacker behavior model
Input: available actions A, previous action p, new actions N

Output: selected action

1: procedure SELECTACTION(A, p,N)
2: for a ∈ A do
3: if FULLFILLSTARGETCOND(a) then
4: return a

5: end if
6: end for

7: if p = null then
8: CHOICE(A)
9: else if WASSUCCESSFUL(p) then

10: if |N|> 0 then
11: if pcontinueNew > RANDOM() then
12: return CHOOSE(N)
13: else
14: return CHOOSE(A)

15: end if
16: else if paltNoNew > RANDOM() then
17: S← GETALTERNATIVES(p)
18: return CHOOSE(S)
19: else
20: return CHOOSE(A)
21: end if
22: else if pretry > RANDOM() then return p

23: else if paltFailed > RANDOM() then
24: S← GETALTERNATIVES(p)
25: return CHOOSE(S)
26: else
27: return CHOOSE(A)
28: end if
29: end procedure

1: procedure CHOOSE(A)
2: for a ∈ A do
3: drel

a ←
d(a,t)

max(d(a,t))+1

4: Wa← psuccess(a)wsuccess(1− pdetection(a))wdetection(1−drel
a )

wdistance

5: end for
6: return WEIGHTEDCHOICE(A,W )
7: end procedure

Detective control response Detective controls define two possible outcomes when attacks are
detected: (i) Stop, i.e., the simulation run terminates, or (ii) a defined path to a postcondition (modeled in
the abstract attack graph) is executed. These postconditions might change property values in the system
model. For example, when an intrusion detection system blocks the adversary’s source IP it inhibits certain
attack actions but potentially also enables new attack actions (e.g., IPS reaction leads to service disruption).

3 CONTROL OPTIMIZATION

The simulation model can support security decision-makers through an iterative process that consists in
modeling a system with a set of particular security controls in place, running the simulation to assess the
joint effectiveness of all implemented controls, and interpreting the results. Although this process yields
valuable insights, discovering interactions between various individual security controls and optimizing them
by altering the system configuration manually until satisfactory results can be achieved is difficult and
tedious. Simulation optimization techniques can alleviate these problems. For an introduction and review
of techniques, cf. Tekin and Sabuncuouglu (2004) and Fu et al. (2005).

Our problem is characterized by a discrete, finite decision space (system designs), multiple objectives
(cost, prevention of attacks, detection of attacks etc.), and, due to the complex relationship between system
configurations and outcome variables, a multi-modal response surface. Multi-objective genetic algorithms
are a particularly promising global optimization technique for this problem class. Hence, we introduce the
concept of a control portfolio characterized by a genotype string of binary indicator variables. Each variable
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represents a control-asset pair (e.g., logPolicy1 - dbServerHosts) that takes the value 1 if the respective
control is applied to the asset and 0 otherwise.

To evaluate a control portfolio, we initialize the system by applying controls to assets according to its
genotype. We then simulate a number of attacks with varying random seeds and record the outcomes using
various metrics. These metrics can be aggregated across simulation runs (e.g., sum, min, max, average,
median) and used as optimization objectives. Because we consider multiple objectives (cost, effectiveness
of controls in preventing and detecting attacks etc.) simultaneously, the optimization does not generally
result in a single “best” control portfolio, but typically in a set of (proposed) (Pareto-)efficient portfolios.
Each proposed efficient portfolio is nondominated, i.e., there is no other portfolio with equal or better
values for all objectives and a strictly better value in one of the objectives.

Computation-wise, this simulation-optimization problem is particularly challenging, mainly due the
combinatorial size of the decision space (2n where n is the number of control-asset combinations), the ex-
pensive simulation-based evaluation procedure, and the need to account for multiple optimization objectives.
Exact solutions (i.e., complete sets of all efficient portfolios for a given number of simulation replications)
can only be obtained for very small problem instances through complete enumeration. To tackle larger,
more practically relevant problem sizes, we therefore resort to meta-heuristic solution procedures. A key
advantage of these approaches is their versatility and ability to optimize large combinatorial problems
without a priori assumptions about their structure. For our optimization problem at hand, we experimented
with genetic algorithms. These population-based approaches are inspired by nature and optimize problems
implicitly through evolutionary mechanisms. They evolve a population of individuals (control portfolios)
iteratively by evaluating their fitness (assessing objectives), selecting fit individuals (control portfolios), and
performing crossover and mutation operations on the selected individuals to generate offspring. The binary
genotype strings generated in this process are evaluated using the simulation, which performs a number of
replications and returns aggregate objective values used for assessing the “fitness” of the respective control
portfolio.

To evaluate algorithms, we so far conducted preliminary experiments for small problem instances (search
space 212) with the NSGA-II (Deb et al. 2000) and SPEA-II (Zitzler et al. 2002) algorithms. We evaluated
solution quality and convergence characteristics by comparing results to that of a complete enumeration
and found that both algorithms performed reasonably well. Using the standard parameters recommended
in the original papers, NSGA-II performed slightly better and on average identified approximately 65%
of all efficient solutions within covering the first 20% of the search space. We therefore used NSGA-II
for experiments with larger problem sizes, which we discuss in the following section. We expect that
customization and parameter tuning will yield significant performance improvements.

4 APPLICATION EXAMPLE

We illustrate the practical application of our tool by means of a hypothetical, but realistic example for
which we perform simulation and optimization experiments.

4.1 Implementation

The attack simulation model and optimization algorithms used were implemented in Java. We use the
scheduling mechanisms provided by MASON (Luke et al. 2004), a fast discrete-event simulation core which
also provides the pseudo-random numbers used is in the simulation, generated by a fast Mersenne Twister
implementation. The underlying knowledge base was implemented in SWI-Prolog (Wielemaker et al. 2012)
and accessed in Java via JPL (Singleton, P. and Dushin, F. and Wielemaker, J. ). The optimization on top
of the simulation core was implemented using Opt4J (Lukasiewycz et al. 2011), a flexible framework for
implementing and testing meta-heuristics.
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Figure 3: Scenario system model overview

4.2 Domain Description

First, we created a general attack model based on an existing penetration testing catalogue. This model
comprises attack patterns (e.g., brute force, SQL injection, social attack, spearfish attack, keylogger, and
backdoor installation) and legitimate actions that can be used maliciously (e.g., connecting to another
computer or accessing data by username and password). To account for attacks that exploit previously
unknown vulnerabilities, we added “zero-day” attack actions. Successful execution of these actions gives
the adversary access to the attacked host. Existing controls such as antivirus software are largely ineffective
against these kinds of attacks.

Next, we enriched the model with security control definitions. Controls include, for example, antivirus
software, patches for specific software, intrusion detection systems, log policies, security training.

Finally, we modeled the organization and its IT infrastructure by creating instances of concepts such
as Host, Subnet, Data, and User, as well as relations between these concepts (e.g., Host stores Data, Host
uses Software, User in UserGroup). For this illustrative scenario, a synthetic example system model was
generated automatically. It contains 30 hosts, 5 web servers, 5 database servers, 30 employees, and 3
administrators. Fig. 3 gives an overview of the generated system (details such as connections between
systems, installed software etc. have been omitted for the sake of clarity).

4.3 Experimental Setup

The primary goal of the proposed optimization method is to facilitate an understanding of how a system
may be protected against different types of adversaries. For our illustrative application, we defined five
types of adversaries summarized in Table 1. We distinguish between external and internal adversaries. The
latter already have some level of access to the system. External adversaries, by contrast, are assigned an
attack host connected to the Internet only. In this case, the demilitarized zone (DMZ) is the main entry
point to the company’s internal network.

We further assigned heterogeneous preference weights, time budgets and other parameters that shape
adversaries’ simulated behavior. An advanced persistent threat (APT), for example, has a large time budget,
the highest technical skill level, and is highly risk-averse (i.e., has a strong preference for avoiding detection).
An unskilled external attacker, on the other hand, is less patient and hence has a low time budget, a low
technical skill level, and is primarily focused on successfully executing attack actions and is less concerned
about being detected. The adversary type Employee has access to the internal workstation hosts but no
technical skill level whatsoever. In all simulation experiments, the target condition for all adversaries is to
access the data set db2.
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Table 1: Adversary types

adversary type timeBudget (sec.) wdetection wsuccess wdistance access
Employee 150000 0.45 0.25 0.30 workstation hosts
Administrator 300000 0.50 0.20 0.30 all hosts and servers
Skilled External 200000 0.30 0.40 0.30 attack client
Unskilled External 100000 0.30 0.40 0.30 attack client
Advanced Persistent Threat 10000000 0.50 0.20 0.30 attack client

Administrator APT Employee Skilled External Unskilled External

Costs Target.reached Detected

    0

38600

0

1

0.000

0.966

Figure 4: Objective values of proposed efficient portfolios

In the experiments, we used minimize costs, minimize successful attacks, and maximize detection of
attacks as optimization objectives. We performed 25 simulation replications for each portfolio for 250
generations using NSGA-II with recommended standard parameters (cf. Deb et al. 2000).

4.4 Results

All optimization scenarios were executed on a 2x3Ghz Xeon machine and took between 92 minutes (Admin
scenario) and 31 hours (APT scenario) to complete, depending on the complexity of the respective scenario.
The genetic algorithm identified 40 efficient portfolios for the advanced persistent threat scenario, 33 for
the skilled external attacker, and 33 for the unskilled external attacker. Compared to these external threat
sources, the number of portfolios was much lower for internal attackers – 2 for the administrator scenario
and 7 for the employee scenario. Fig. 4 visualizes the portfolios and their objective values.

First focusing on the administrator, we see that this type of adversary always reaches the target, which
is expected given that he/she already has all required access privileges. For this type of attacker, there are
no effective preventive controls available, but applying a log policy on the hosting dbServerHosts at least
raises the detection rate to approximately 20%.

An employee as an attacker on the other hand succeeds in obtaining access to the target data set only
in 13,7% of simulation runs at best. Table 2 summarizes the prevalence of controls in efficient portfolios
relative to the theoretical maximum, i.e., no. efficient portfolios x no. assets that the control can be applied
to.

Even though the employee has access to internal systems, he cannot access the hosting servers directly
and lacks the skills for technical attacks and must solely rely on social attacks. Accordingly, a control
portfolio that includes security trainings (train1, train2, train3) for the database (dbAdminGroup) and
server administrators (adminGroup) turns out as highly effective against this type of attacker.

As expected, the advanced persistent threat has the highest success rate of all external attackers. Due
to its proficiency and budget, a wide range of attacks and attack paths are available, and hence, a large
number of security controls is present in most portfolios. Patching vulnerable systems, deploying antivirus
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Table 2: Relative prevalence of controls in proposed efficient portfolios

adversary type av1 av2 ids1 ids2 patch log train1 train2 train3
Administrator 0 0 0 0 0 0.1 0 0 0
Employee 0 0 0 0 0 0.2 0.0238 0.0714 0
Skilled external 0.1484 0.0387 0.1032 0.0194 0.0903 0.1548 0.0430 0.0160 0
Unskilled external 0.2242 0 0.1394 0.0667 0.1273 0.1333 0.02024 0.0707 0
APT 0.1484 0.0387 0.1032 0.0194 0.0903 0.1548 0.0430 0.0160 0

software, and performing security trainings are the most common preventive controls in efficient portfolios.
For the dmzHosts in particular, av2 – which in our model offers a higher detection rate at higher costs than
av1 – is frequently included in efficient portfolios. The highest level of security training for the adminGroup
only occurs in portfolios for this attacker type. Even with high investments in security controls, however,
this attacker can rarely be stopped from reaching the target.

Optimization results for the skilled external attacker were similar, even though this type of adversary
succeeded less frequently. Accordingly, efficient portfolios tended to include less expensive controls.
Against an unskilled external attacker, intrusion detection systems proved effective and showed a high
detection rate. To prevent email attacks (including backdoors and keyloggers), security training, especially
for workstation users (workstationUserGroup) were included in many portfolios.

5 CONCLUSIONS

In this paper, we introduced a novel simulation-based method for assessing and optimizing the security
of complex information systems. Our approach combines abstract attack knowledge and a model of the
system to be protected with discrete event simulation and genetic algorithms for multi-criteria optimization.
The method identifies efficient sets of security controls to prevent and detect attacks. This flexible approach
facilitates the modeling of complex causal and temporal interactions as well as the proper differentiation
between different types of adversaries. It not only determines whether or not there are possible paths to
reach a target condition for different types of adversaries, but also performs probabilistic analyses on which
combinations of controls are likely to detect attacks and prevent their successful execution. Rather than
assessing individual security controls separately, this integrated evaluation recognizes that the combined
effectiveness of security controls is generally not cumulative, but highly context-dependent and the result of
complex interactions. By explicitly modeling adversaries’ behavior using abstract attack graphs as mental
maps, we can generate attack paths dynamically through simulation. This is a salient feature because the
construction of complete graphs of all possible attacks on a particular systems is typically infeasible for
large networked environments.

From a practical perspective, the promising results of our simulation-optimization experiments suggest
that the proposed approach is viable and can be usefully applied to study and optimize real-world information
systems. An important advantage of the proposed approach in this context is the separation of abstract
attack knowledge and knowledge about the particular information system to be protected. Because of this
separation, only general knowledge on generic attack patterns needs to be modeled by a security domain
expert, whereas organization that want to leverage the expert’s formalized knowledge only need to model
their own information system to do so.

The development of such a comprehensive attack knowledge base is ongoing work. It necessitates
the definition of modeling conventions and sets of common concepts that can be used across security
subdomains. Once formally implemented, an extensive set of attack patterns would support a broad view
on security and help to discover attack paths that can otherwise not be easily identified.

Since the proposed framework rests fundamentally on adequate modeling of adversaries’ behavioral
patterns, we are also in the process of further refining and validating behavioral mechanisms. In this context,
we draw upon and extend the existing body of literature (e.g., Liu et al. 2005, Sallhammar et al. 2005).
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Customization and parameter tuning to increase the performance of the optimization are also important
areas of future work in order to overcome the significant computational challenges involved in optimizing
larger problem instances.

Ultimately, we aim to not only present decision-makers with lists of efficient portfolios of security
controls for each adversary type, but to provide interactive decision support for the selection of a final set of
security controls to implement. To this end, we will implement mechanisms for assessing the effectiveness
of control portfolios against multiple adversary types and apply suitable interactive visualizations to explore
the space of efficient solutions (e.g., those described in Neubauer et al. 2006 or Gettinger et al. 2013).
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